

Synergies between Renewable Energies and Combined Heat and Power Mihail Ketov, June 12th 2018, Bucharest

Introduction

Climate Policy Targets lead to Energy Transition

Emerging Usage of Renewable Energy Sources (RES)

- German target: 50% share of RES in electricity consumption in 2030
- Especially intermitted sources like wind and solar

Increasing feed-in from RES must be integrated into electricity markets

Costs of Renewables on Downward Trend

German RES capacity auctions (mandatory up from 750 kW)

- Pay-as-bid principle based on merit order of bids (subsidy level and capacity)
 - Bids with lowest subsidy level will be granted until the total capacity reached
 - Total capacity based on expansion targets for each technology
- Take place three times a year since 2015

→ RES close to economic break even and thus subsidies not necessary

Introduction

Intermittent Renewable Generation requires Flexibility

Compare German RES feed-in 2015 and 2030 – Exemplary Week

- In future RES feed-in will
 - 1. exceed demand temporarily
 - 2. nearly completely missing for up to two weeks
- Volatile and random RES generation needs to be compensated
- Flexible and secure generation capacity crucial in order to cover volatile difference between demand and RES feed-in (residual load)

Institut für

Combined Heat and Power as Efficient Generation

Flexibility Option: Combined Heat and Power (CHP)

• CHP plants provide thermal and electric power simultaneously

High total efficiency due to usage of both energy types (up to 90 %)

- Decreasing competitiveness of thermal plants due to high RES share with low marginal costs
 - Increasing efficiency by using heat
 - Additional revenue due to heat sales
 - Target of German government:
 25% of thermal generation with CHP
- CHP will coexist with RES during transition

German CHP Electricity Generation Share of Thermal Power Plants

CHP in Germany and Europe

Installed CHP

- Thermal and electric output increased in Germany
- → CHP increase parallel to RES
- CHP by countries in Europe
 - Widely used technology
 - Installed for utility services as district
 heating as well as for industrial applications

Electric CHP Generation (2015)

Analysis

CHP Industry Applications in Germany

- CHP process heating applications 0
 - Steam processes up to 500 °C
 - Hot water processes
 - Cooling
- Primarily used in chemical, paper \rightarrow and food production

Various technologies available depending \rightarrow upon application

Synergies between Renewable Energies and Combined Heat and Power | 12.06.2018 | Mihail Ketov

CHP Applications in German Industry (2011)

Source: Bundesverband Kraft-Wärme-Kopplung e.V.

nstitut für

CHP as a Part of Heat Generation Portfolios

Heat Demand

- Depending on connected heat consumers, temperature and time
- Heat demands needs to be covered at all times

Heat Supply

- CHP units provide heat and electric energy simultaneously
- Power-to-Heat (PtH) as heat generation for peak load through electric consumption
- Heat storages for equalizing demand
- Heat generation portfolio provides a degree of freedom in unit commitment
- Flexibility given in electric generation (CHP) and electric consumption (PtH)

Coupled Electricity and Heat Sector

Heat Portfolios in Germany

Industrial heating

- Temperature independent process heat
- Large-scale consumption
- High utilization and secure supply due alternative generation units

District heating

- Mainly in urban areas
- Consumers mostly small scale businesses and private households
- Volatile demand leads to lower utilization and back-up capacities
- Both types can provide flexibility

Large Scale Heat Portfolios

Coverage of Residual Load with CHP and PtH

RES Integration and Market Incentives

- CHP and PtH used to cover thermal demand
 - RES feed-in exceeds demand
 - → PtH uses RES overproduction

- RES feed-in is missing
- → CHP fills electric demand gap

nstitut für

- → Capacity for positive and negative residual load
- → Flexibility demand will result in corresponding incentives at the electricity market
- Integration of RES by using flexible CHP and PtH
- CHP and RES complement each other

Key Take Away

Introduction

Intermitted and random feed-in from RES results in flexibility demand

Analysis

- CHP with high total efficiency due utilization of thermal and electric output
 - Efficiency up to 90 %
 - Germany with the largest CHP generation in Europe
 - CHP will coexist with RES
 - CHP for heat provision used in chemical, paper and food production
 - Diversity of technologies for different production applications
- Flexibility given by CHP in electric generation and PtH in consumption

Flexibility

- Electricity market will reflect flexibility demand by price incentives
- CHP and RES complement each other

Any further questions?

Institute for Power Systems and Power E	Economics (IAEW)
RWTH Aachen University	

Mihail Ketov, M.Sc. Mobile: +49 (0)162 80 252 88 Mail: mihail.ketov@rwth-aachen.de Web: www.iaew.rwth-aachen.de

Director of IAEW Univ.-Prof. Dr.-Ing. Albert Moser

> Federal Ministry for Economic Affairs and Energy

Supported by: