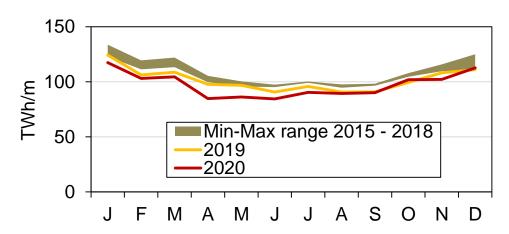


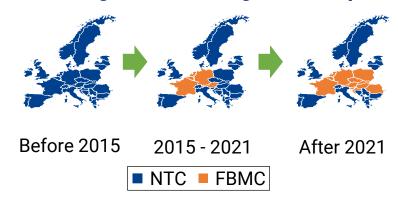
COVID-19 – How performed Flow-Based during the pandemic?

Global COVID-19 pandemic

- Public measures to limit infections
- Reduction of economic activities, social routines and electricity demand


European electricity exchanges

- Exchanges traded in 27 countries
 - Im- and exports for security of supply and social welfare maximisation
 - <u>Central Western Europe</u> (CWE) applies <u>Flow-Based Market Coupling</u> (FBMC)
- Prior to FBMC introductions analysis to ensure positive social welfare gain
 - Forecasts were based on common market situations
 - Longer pandemics not considered
- → Performance in pandemic not clear


Aim

Quantitative techno-economic analysis of FBMC during the pandemic

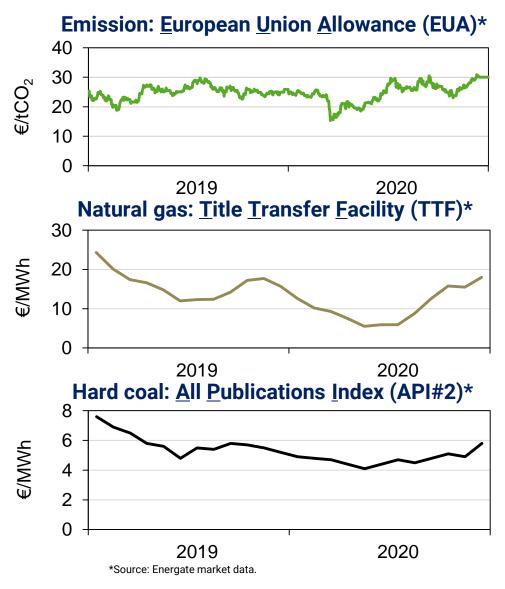
Vertical grid load in Central Western Europe*

Exchange market designs in Europe

*Source: ENTSO-E Transparency Platform.

Fuel and emission prices – *Drop and return during Covid-19*

Non-COVID in 2019 vs COVID in 2020


- Price decline in the first lockdown at the start of 2020
 - 19% natural gas price (yearly average)
 - 34% hard coal price (yearly average)
- Reduced industrial consumption and electricity pushed prices downwards

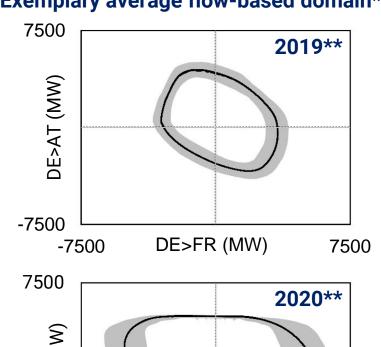
Pandemic effect

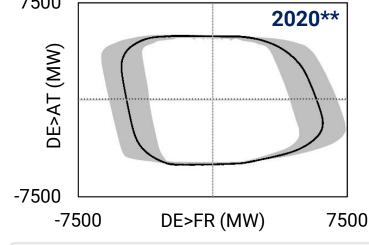
- Relaxation of public measures lead to price rebound behaviour
- Price recovery by the end of the year
- → Pandemic experience reduced market risk and brought price levels back

Effect on electricity markets

- Generation cost of system mainly due to thermal power plants
- → Lower fuel and emission prices reduced electricity generation cost

FBMC domain - Commercial exchange capacities raised due to less grid utilisation


Historical flow-based restrictions


- Commercial exchange capacities increased with physical similar grid
- Example: Germany-Austria
 - Absolute capacity rise
 - Variability of capacity reduced
 - FBMC domain shape closer to <u>Net</u> <u>Transfer Capacity (NTC) in 2020
 </u>
- German-Austrian exchange less dependent on German-French in 2020

Less line utilisation in base case

- Less electricity consumption in 2020 compared to 2019
 - Increase of average <u>Remaining</u> <u>Available Margin (RAM)</u>
 - Physical limits reached with higher commercial flows in 2020
- Pandemic effects led capacities to rise

Exemplary average flow-based domain*

Average 25%-75% quantile

^{*}Methodology: Average restrictions calculated based on intersecting points of all hourly feasible domains of a year and the origin.

^{**}Source: Joint Allocation Office (JAO).

Market simulation – Yearly Europe-wide implicit day-ahead market clearing

Input data

Exogenous values

- Thermal plants with fuel, transport and emission cost
- Hydro power plant cascades including inflows
- Outage and revision length distributions
- FBMC restrictions
- NTC
- <u>Coordinated NTC</u> (CNTC)
- Renewable feed-in
- Spot and reserve demand
- Diverse other input data

Linear optimisation problem

Target function

Total operation cost

minimisation

Decision variables

- Unit commitment
- Import and export

Restrictions

- Load coverage
- Reserve provision
- Unit restrictions
- Exchange capacities

Hourly results

Endogenous variables

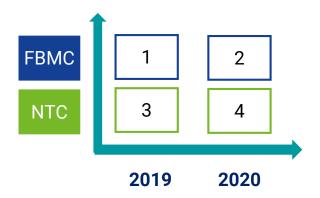
- Commercial exchanges
- Cost-based spot prices and reserve prices each quality
- Price zones
- ■Total generation cost
- Unit commitment
- Storage filling levels
- Outage and revision events
- Social welfare measurements
- Technic-economic assessments
- Diverse other output data

Assumptions

- Market approximations
 - Perfect competition
 - Perfect foresight
 - Level playing field

- Exchange assumptions
 - Post-processed FBMC exchanges via a quadratic optimization
 - NTC exchanges directly used
- Simultaneous capacity allocation in a hybrid NTC, CNTC and FBMC market model

Scenarios - NTC vs FBMC for 2019 and 2020 to assess market coupling design


Input data sources

- Hourly load and feed-in of renewable energy sources from ENTSO-E
- Power plant data base from Maon
- Exchange capacities
 - FB domains (approximately 1.3 million restrictions) from JAO
 - NTC for CWE generated from FB domain for every hour
- → 8760 coupled consecutive hours and 5000 units endogenously modelled

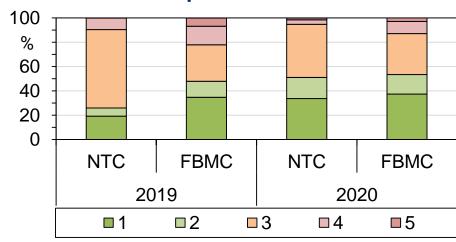
Modelled region

- Bidding zones in CWE connected with 14 other bidding zones
- Net position of CWE interdependent with net position of surrounding area
- → Simulating the Single Day-Ahead Coupling (SDAC) region to capture the interdependencies

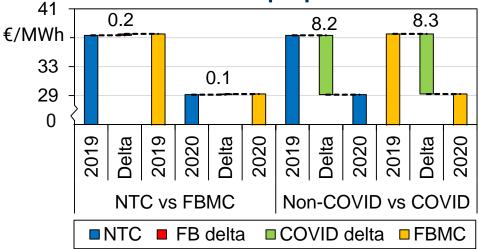
Four simulation scenarios

50 modelled bidding zones

Spot prices – Multiple higher influence of COVID than FBMC


CWE price convergence

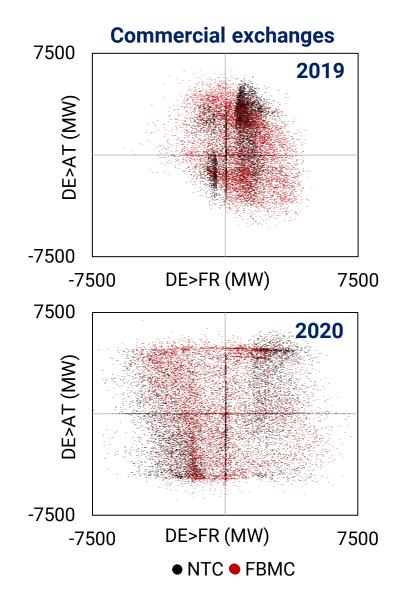
- FBMC leads to higher price convergence indicating greater interconnector utilisation
- Higher capacities in COVID times led to greater price parity
- High-load situations (2019) with FBMC as the superior coupling design


German spot base prices

- Prices do not differ significantly between NTC and FBMC
- Pandemic year reduction was 8 €/MWh and market design difference at approx. 0.2 €/MWh
- Lower demand and fuel prices during pandemic led to reduction of base spot prices in Germany by over 20%

Number of price zones in CWE*

^{*} Methodology: Bidding zones with price deltas within the range of 1 €/MWh is considered to be one price zone.


Cross-border exchanges – Commercial exchange flexibility higher with FBMC

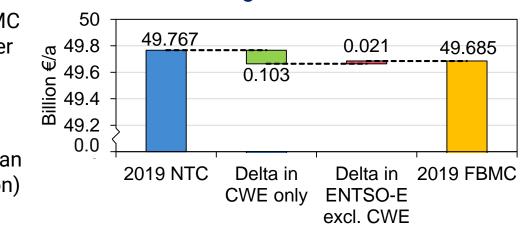
Domain edge

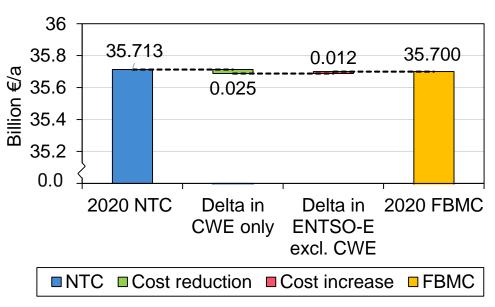
- Higher commercial capacities in 2020
- DE>AT more often at edge during 2020 due to missing domain variability
- NTC flows display sharper boundaries
 - NTC exchanges only consider flow limits of one commercial line
 - FBMC exchanges consider flow limits of all critical lines within the region
- Greater exchange magnitude and variability for FBMC in both years

Domain center

- FBMC exchanges more often near the vertical axis than NTC
 - Multi-lateral influences in FBMC
 - NTC does not reach FBMC flexibility
- → Lower exchange magnitude in FBMC allows higher utilisation of other lines
- → FBMC enables greater economic gains

Social welfare indications - FBMC reduces generation costs especially in CWE


FBMC vs NTC


- More flexible exchanges due to FBMC reduce cost in CWE, but lead to lower export to non-CWE
- To compensate missing electricity supply, non-CWE cost rises
- Cost increase outside CWE lower than cost reduction within CWE (FB region)
- Overall lower total costs

COVID vs non-COVID

- Difference of approx. 14 billion €/a
- In higher load scenario (2019), FBMC yields greater gains
- → Load has multiple higher influence on cost than exchange design
- → FBMC leads to higher social welfare for the overall system during non-COVID as well as COVID year

Total generation cost

Key take away – FBMC superior to NTC for pandemic and non-pandemic times

Goal

Quantitative techno-economic analysis of FBMC behaviour during long lasting pandemic

Analysis

- Drop for fuel and emissions price in first lockdown and return afterwards
- Higher commercial exchange capacities during COVID-19

Model

Simulating all bidding zones in SDAC with a hybrid NTC, CNTC and FBMC model

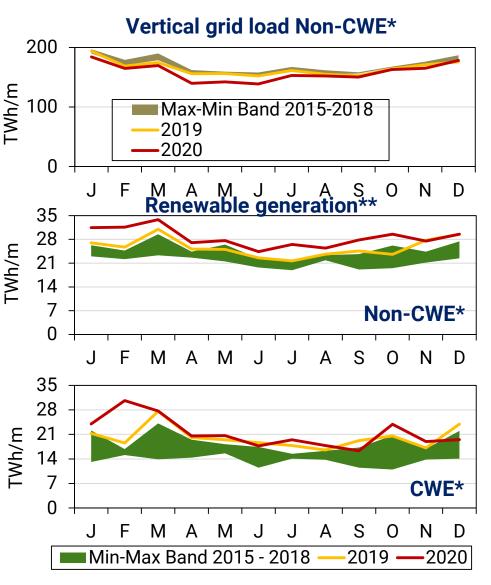
Results

- Significant higher price convergence for FBMC in comparison to NTC
- Spot price difference by market design at 0.2 €/MWh and by COVID-19 at 8 €/MWh
- Reduction of 14 billion €/a in total generation costs during pandemic
- → FBMC emerges as the better approach of the two during normal time as well as for a global pandemic

MAON

Maon GmbH | Bismarckstraße 10-12 | 10625 Berlin

Yash Patel, M.Sc. yp@maon.eu


COVID-19– Lower demand with higher renewable generation

Demand

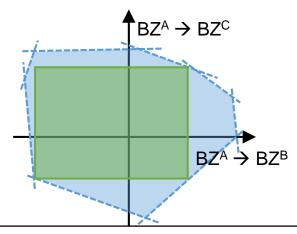
- Non-CWE experience similar effect in grid load as CWE
- CWE to non-CWE exchanges will be affected

Variable renewable generation

- Generation amount increased for CWE and non-CWE for 2019 and 2020
- Installation of new capacities led to higher output compared to historical years
- This will push the prices even downwards

^{*}Source: ENTSO-e

^{**} Solar, wind onshore, wind offshore



NTC estimation – Technically feasible NTC domain for each hour

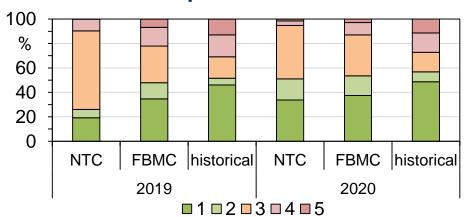
Methodology

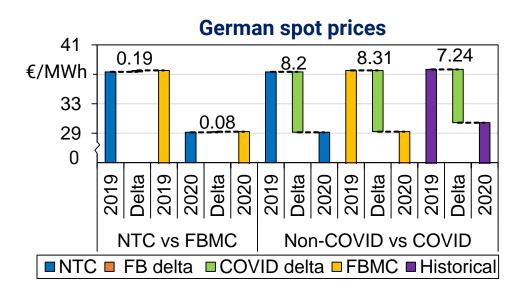
- Estimation of hourly NTC value using FB domain
- Multi-lateral dependences taken into consideration
- Maximize individual exchange values
- Technically feasible NTC values for all valid lines in the CWE region

Exemplary estimation

- Net Transfer Capacity (NTC)
- Flow-Based Market Coupling (FBMC) restrictionBidding Zone (BZ)

Model validation – Model mimics reality


Historical price convergence


- FBMC simulation output and historical values closely related
- 2020 in reality also showed higher price convergence
- Due to lack of perfect foresight, the historical values show higher price convergence than model outcome

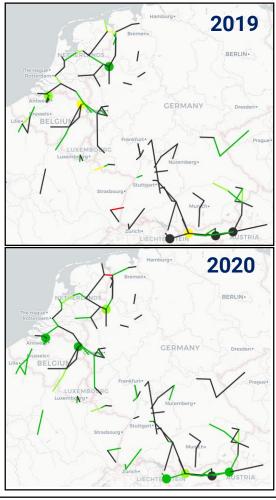
German spot base prices

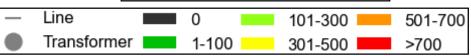
Price difference in reality is about 7
 €/MWh between the years

Number of price zones in CWE*

^{*} Source: JAO

FB congestion – Higher grid utilization during pandemic


Flow on critical elements


- Congestion hours on critical network elements or contingencies are represented in the plot
- JAO only published names starting from 2nd October 2019
- → FBMC advantage of using actual grid elements enables in identifying major grid bottlenecks

Grid utilization

- Highest congestion between Germany and France for 2019, while it is between Germany-Netherlands for 2020
- Spread out congestion in COVID times
- Flow on the critical elements increased despite of higher flow capacities during 2020

4th Quarter congestion map

